Итоги дня: заветный завод жив, потепление в выходные, музкомедия возвращается
21:00
Внезапное потепление ожидает Хабаровск ближайшие в выходные дни
19:00
Современные российские авторы стали лауреатами первой премии "Книжные люди"
18:35
В гости к казакам, тибетские чаши и путешествие в Китай - афиша на 6 и 7 декабря
18:00
Рыба станет доступней для жителей Хабаровского края
17:30
Сбер открывает частным инвесторам в России доступ к фондовому рынку Индии
17:00
Пир на весь мир - от минимализма до гастрономической роскоши на новогоднем столе
17:00
Новые возможности для участников спецоперации создают в Хабаровском крае
16:45
Как циклон парализовал Камчатку на четверо суток: главное о декабрьской непогоде
16:35
"Чебурашка 2": любимый герой возвращается с новым фильмом и в новом дизайне детской карты
16:25
"Ключ" к парковке: приложение "Ростелекома" поможет найти место для автомобиля у дома
16:15
Дмитрий Коньков: Мы одни из тех, кто стоял у истоков создания ММА в России
16:10
Практические занятия с военнослужащими ВВО стартовали в Хабаровском крае
16:00
Залпом милосердия вместо огня ударили бойцы ТОФ по окруженному врагу
15:43
На одном из пустырей в Москве по инициативе ГИН создана стоянка на 40 автомобилей
15:37

Российские учёные получили награду по итогам конкурса AIJ Science 2025

Авторы представили научную статью о новом методе обработки данных для систем компьютерного зрения
24 ноября, 14:50 Общество
AIJ Science 2025 пресс-служба Сбербанка
AIJ Science 2025
Фото: пресс-служба Сбербанка
Нашли опечатку?
Ctrl+Enter

На международной конференции AI Journey (18+) ("Путешествие в мир искусственного интеллекта") подведены итоги конкурса AIJ Science (18+) — отбора научных статей по новейшим исследованиям в области искусственного интеллекта и машинного обучения. Российские работы поступили из разных регионов страны — от Комсомольска-на-Амуре до Луганска, сообщает пресс-служба Сбера.

В 2025 году на конкурс было подано свыше 240 работ от AI-исследователей из 17 стран: России, Индии, Китая, США, Индонезии, Канады, Беларуси, Узбекистана, Южной Кореи, Саудовской Аравии, Азербайджана, Эфиопии, Кипра, Иордании, Армении, Вьетнама и Судана. Российские работы поступили из разных регионов страны — от Комсомольска-на-Амуре до Луганска.

К публикации в специальном выпуске издания "Доклады Российской академии наук. Математика, информатика, процессы управления" (16+) и его англоязычной версии Doklady. Mathematics допущено 42 статьи. Все материалы рецензируют ведущие профильные эксперты, а статьи для публикации в издании и лучшая статья определяются авторитетной конкурсной комиссией из учёных Сбера, Института AIRI и Института системного программирования РАН.

Научная статья "MMRFiGN: ансамблевая графовая модель сегментации несбалансированных изображений высокого разрешения, информированная мультикомпонентными марковскими случайными полями" признана лучшей работой AIJ Science 2025. Её авторы — д.ф.-м.н. Андрей Горшенин и Анастасия Достовалова — получили денежную премию в размере 1 млн рублей на сцене AI Journey.

Андрей Белевцев, старший вице-президент, руководитель блока "Технологическое развитие" Сбербанка:

"Непрерывные научные исследования крайне важны для развития прикладного искусственного интеллекта, поскольку они лежат в основе как создания новых продуктов, так и совершенствования существующих. Особенно хочется отметить растущий интерес к конкурсу не только в нашей стране, но и за рубежом: более 200 работ из 17 стран мира — это отличное подтверждение его международного признания. Работа-победитель этого года — яркий пример исследования с широкими возможностями для практического применения искусственного интеллекта в реальном мире: в сельском хозяйстве, на транспорте, в труднодоступных регионах и в сфере безопасности. Уверен, что предложенная архитектура станет серьёзным подспорьем и ценным инструментом для других учёных и разработчиков".

Авторы статьи изучили семантическую сегментацию изображений высокого разрешения с дисбалансом классов и предложили новый метод — ансамблевую графовую нейросетевую модель MMRFiGN, основанную на интеграции в архитектуру мультикомпонентных марковских случайных полей. Эффективность подхода продемонстрирована как теоретически (доказана возможность ускорения обучения по сравнению с сопоставимыми по размеру графовыми и свёрточными решениями), так и эмпирически (на открытых датасетах из снимков с беспилотных аппаратов MMRFiGN превосходит по точности более чем на 15% лучшую трансформерную модель 2025 года для обработки аэрокосмических изображений). При этом модель содержит почти в два раза меньше параметров, чем сопоставимые по результатам аналоги. Предложенные методы эффективны при анализе сложных сцен в автономной навигации для беспилотных систем.

16842
77
31